Αρχειοθήκη ιστολογίου

Αλέξανδρος Γ. Σφακιανάκης
ΩτοΡινοΛαρυγγολόγος
Αναπαύσεως 5
Άγιος Νικόλαος Κρήτη 72100
2841026182
6032607174

Τρίτη 20 Οκτωβρίου 2015

Arteriosclerosis, Thrombosis, and Vascular Biology

Platelet-Associated Matrix Metalloproteinases Regulate Thrombus Formation and Exert Local Collagenolytic Activity [Original Research]Objective—Platelets are increasingly implicated in processes beyond hemostasis and thrombosis, such as vascular remodeling. Members of the matrix metalloproteinase (MMP) family not only remodel the extracellular matrix but also modulate platelet function. Here, we made a systematic comparison of the roles of MMP family members in acute thrombus formation under flow conditions and assessed platelet-dependent collagenolytic activity over time.Approach and Results—Pharmacological inhibition of MMP-1 or MMP-2 (human) or deficiency in MMP-2 (mouse) suppressed collagen-dependent platelet activation and thrombus formation under flow, whereas MMP-9 inhibition/deficiency stimulated these processes. The absence of MMP-3 was without effect. Interestingly, MMP-14 inhibition led to the formation of larger thrombi, which occurred independently of its capacity to activate MMP-2. Platelet thrombi exerted local collagenolytic activity capable of cleaving immobilized dye-quenched collagen and fibrillar collagen fibers within hours, with loss of the majority of the platelet adhesive properties of collagen as a consequence. This collagenolytic activity was redundantly mediated by platelet-associated MMP-1, MMP-2, MMP-9, and MMP-14 but occurred independently of platelet α-granule release (Nbeal2–/– mice). The latter was in line with subcellular localization experiments, which indicated a granular distribution of MMP-1 and MMP-2 in platelets, distinct from α-granules. Whereas MMP-9 protein could not be detected inside platelets, activated platelets did bind plasma-derived MMP-9 to their plasma membrane. Overall, platelet MMP activity was predominantly membrane-associated and influenced by platelet activation status.Conclusions—Platelet-associated MMP-1, MMP-2, MMP-9, and MMP-14 differentially modulate acute thrombus formation and at later time points limit thrombus formation by exerting collagenolytic activity.
Deubiquitinases Modulate Platelet Proteome Ubiquitination, Aggregation, and Thrombosis [Original Research]Objective—Platelets express a functional ubiquitin–proteasome system. Mass spectrometry shows that platelets contain several deubiquitinases, but whether these are functional, modulate the proteome, or affect platelet reactivity are unknown.Approach and Results—Platelet lysates contained ubiquitin–protein deubiquitinase activity hydrolyzing both Lys48 and Lys63 polyubiquitin conjugates that was suppressed by the chemically unrelated deubiquitinase inhibitors PYR41 and PR619. These inhibitors acutely and markedly increased monoubiquitination and polyubiquitination of the proteome of resting platelets. PYR41 (intravenous, 15 minutes) significantly impaired occlusive thrombosis in FeCl3-damaged carotid arteries, and deubiquitinase inhibition reduced platelet adhesion and retention during high shear flow of whole blood through microfluidic chambers coated with collagen. Total internal reflection microscopy showed that adhesion and spreading in the absence of flow were strongly curtailed by these inhibitors with failure of stable process extension and reduced the retraction of formed clots. Deubiquitinase inhibition also sharply reduced homotypic platelet aggregation in response to not only the incomplete agonists ADP and collagen acting through glycoprotein VI but also to the complete agonist thrombin. Suppressed aggregation was accompanied by curtailed procaspase activating compound-1 binding to activated IIb/IIIa and inhibition of P-selectin translocation to the platelet surface. Deubiquitinase inhibition abolished the agonist-induced spike in intracellular calcium, suppressed Akt phosphorylation, and reduced agonist-stimulated phosphatase and tensin homolog phosphatase phosphorylation. Platelets express the proteasome-associated deubiquitinases USP14 and UCHL5, and selective inhibition of these enzymes by b-AP15 reproduced the inhibitory effect of the general deubiquitinase inhibitors on ex vivo platelet function.Conclusions—Remodeling of the ubiquitinated platelet proteome by deubiquitinases promotes agonist-stimulated intracellular signal transduction and platelet responsiveness.
DLL4/Notch1 and BMP9 Interdependent Signaling Induces Human Endothelial Cell Quiescence via P27KIP1 and Thrombospondin-1 [Original Research]Objective—Bone morphogenetic protein-9 (BMP9)/activin-like kinase-1 and delta-like 4 (DLL4)/Notch promote endothelial quiescence, and we aim to understand mechanistic interactions between the 2 pathways. We identify new targets that contribute to endothelial quiescence and test whether loss of Dll4+/ in adult vasculature alters BMP signaling.Approach and Results—Human endothelial cells respond synergistically to BMP9 and DLL4 stimulation, showing complete quiescence and induction of HEY1 and HEY2. Canonical BMP9 signaling via activin-like kinase-1-Smad1/5/9 was disrupted by inhibition of Notch signaling, even in the absence of exogenous DLL4. Similarly, DLL4 activity was suppressed when the basal activin-like kinase-1-Smad1/5/9 pathway was inhibited, showing that these pathways are interdependent. BMP9/DLL4 required induction of P27KIP1 for quiescence, although multiple factors are involved. To understand these mechanisms, we used proteomics data to identify upregulation of thrombospondin-1, which contributes to the quiescence phenotype. To test whether Dll4 regulates BMP/Smad pathways and endothelial cell phenotype in vivo, we characterized the vasculature of Dll4+/ mice, analyzing endothelial cells in the lung, heart, and aorta. Together with changes in endothelial structure and vascular morphogenesis, we found that loss of Dll4 was associated with a significant upregulation of pSmad1/5/9 signaling in lung endothelial cells. Because steady-state endothelial cell proliferation rates were not different in the Dll4+/ mice, we propose that the upregulation of pSmad1/5/9 signaling compensates to maintain endothelial cell quiescence in these mice.Conclusions—DLL4/Notch and BMP9/activin-like kinase-1 signaling rely on each other’s pathways for full activity. This represents an important mechanism of cross talk that enhances endothelial quiescence and sensitively coordinates cellular responsiveness to soluble and cell-tethered ligands.
Severity of Psoriasis Associates With Aortic Vascular Inflammation Detected by FDG PET/CT and Neutrophil Activation in a Prospective Observational Study [Original Research]Objective—To understand whether directly measured psoriasis severity is associated with vascular inflammation assessed by 18F-fluorodeoxyglucose positron emission tomography computed tomography.Approach—In-depth cardiovascular and metabolic phenotyping was performed in adult psoriasis patients (n=60) and controls (n=20). Psoriasis severity was measured using psoriasis area severity index. Vascular inflammation was measured using average aortic target-to-background ratio using 18F-fluorodeoxyglucose positron emission tomography computed tomography.Results—Both the psoriasis patients (28 men and 32 women, mean age 47 years) and controls (13 men and 7 women, mean age 41 years) were young with low cardiovascular risk. Psoriasis area severity index scores (median 5.4; interquartile range 2.8–8.3) were consistent with mild-to-moderate skin disease severity. Increasing psoriasis area severity index score was associated with an increase in aortic target-to-background ratio (β=0.41, P=0.001), an association that changed little after adjustment for age, sex, and Framingham risk score. We observed evidence of increased neutrophil frequency (mean psoriasis, 3.7±1.2 versus 2.9±1.2; P=0.02) and activation by lower neutrophil surface CD16 and CD62L in blood. Serum levels of S100A8/A9 (745.1±53.3 versus 195.4±157.8 ng/mL; P<0.01) and neutrophil elastase-1 (43.0±2.4 versus 30.8±6.7 ng/mL; P<0.001) were elevated in psoriasis. Finally, S100A8/A9 protein was related to both psoriasis skin disease severity (β=0.53; P=0.02) and vascular inflammation (β=0.48;P=0.02).Conclusions—Psoriasis severity is associated with vascular inflammation beyond cardiovascular risk factors. Psoriasis increased neutrophil activation and neutrophil markers, and S100A8/A9 was related to both skin disease severity and vascular inflammation.
Protein-Bound Plasma N{varepsilon}-(Carboxymethyl)lysine Is Inversely Associated With Central Obesity and Inflammation and Significantly Explain a Part of the Central Obesity-Related Increase in Inflammation: The Hoorn and CODAM Studies [Original Research]Objective—Adipose tissue inflammation contributes to the development of complications, such as insulin resistance and type 2 diabetes mellitus. We previously reported that plasma levels of N-(carboxymethyl)lysine (CML) were decreased in obese subjects resulting from CML accumulation in adipose tissue and that this CML accumulation plays an important role in adipose tissue inflammation. The objective of this study is to investigate associations between obesity (body mass index, waist circumference, and trunk fat mass), plasma CML (as an inversely correlated marker of CML accumulation in adipose tissue), and low-grade inflammation (LGI) in a large sample of individuals whose weight status ranged from normal to morbid obesity.Approach and Results—We studied 1270 individuals of the Cohort on Diabetes and Atherosclerosis Maastricht Study and Hoorn Study, in whom protein-bound CML levels were measured by UPLC-Tandem MS, and 6 inflammatory markers were measured with multiarrays. These inflammatory markers were compiled into an LGI score. Multiple linear regression, adjusted for covariates, showed that (1) waist circumference was inversely associated with protein-bound CML plasma levels (standardized regression coefficient [β]=–0.357 [95% confidence interval: –0.414; –0.301]); (2) protein-bound CML was inversely associated with LGI score (β=–0.073 [–0.130;-0.015]); and (3) the association between waist circumference and LGI (β=0.262 [0.203;0.321]) was attenuated after adjustment for protein-bound CML plasma levels and other potential mediators (to β=0.202 [0.138;0.266]), with CML explaining the greatest portion of the attenuation (12%). Further analysis with dual-energy X-ray absorptiometry measures of body composition confirmed a strong inverse association of fat mass preferentially accumulated in the trunk with protein-bound CML plasma levels, significantly explaining 21% of the trunk fat–LGI association.Conclusions—Obesity, in particular central obesity, is characterized by greater levels of LGI but by lower levels of circulating CML; the latter significantly explaining a portion of the positive association between central obesity and inflammation.
Three-Dimensional Vascular Network Assembly From Diabetic Patient-Derived Induced Pluripotent Stem Cells [Original Research]Objective—In diabetics, hyperglycemia results in deficient endothelial progenitors and cells, leading to cardiovascular complications. We aim to engineer 3-dimensional (3D) vascular networks in synthetic hydrogels from type 1 diabetes mellitus (T1D) patient–derived human-induced pluripotent stem cells (hiPSCs), to serve as a transformative autologous vascular therapy for diabetic patients.Approach and Results—We validated and optimized an adherent, feeder-free differentiation procedure to derive early vascular cells (EVCs) with high portions of vascular endothelial cadherin-positive cells from hiPSCs. We demonstrate similar differentiation efficiency from hiPSCs derived from healthy donor and patients with T1D. T1D-hiPSC–derived vascular endothelial cadherin-positive cells can mature to functional endothelial cells–expressing mature markers: von Willebrand factor and endothelial nitric oxide synthase are capable of lectin binding and acetylated low-density lipoprotein uptake, form cords in Matrigel and respond to tumor necrosis factor-α. When embedded in engineered hyaluronic acid hydrogels, T1D-EVCs undergo morphogenesis and assemble into 3D networks. When encapsulated in a novel hypoxia-inducible hydrogel, T1D-EVCs respond to low oxygen and form 3D networks. As xenografts, T1D-EVCs incorporate into developing zebrafish vasculature.Conclusions—Using our robust protocol, we can direct efficient differentiation of T1D-hiPSC to EVCs. Early endothelial cells derived from T1D-hiPSC are functional when mature. T1D-EVCs self-assembled into 3D networks when embedded in hyaluronic acid and hypoxia-inducible hydrogels. The capability of T1D-EVCs to assemble into 3D networks in engineered matrices and to respond to a hypoxic microenvironment is a significant advancement for autologous vascular therapy in diabetic patients and has broad importance for tissue engineering.
Deletion of Methionine Sulfoxide Reductase A Does Not Affect Atherothrombosis but Promotes Neointimal Hyperplasia and Extracellular Signal-Regulated Kinase 1/2 Signaling [Original Research]Objective—Emerging evidence suggests that methionine oxidation can directly affect protein function and may be linked to cardiovascular disease. The objective of this study was to define the role of the methionine sulfoxide reductase A (MsrA) in models of vascular disease and identify its signaling pathways.Approach and Results—MsrA was readily identified in all layers of the vascular wall in human and murine arteries. Deletion of the MsrA gene did not affect atherosclerotic lesion area in apolipoprotein E–deficient mice and had no significant effect on susceptibility to experimental thrombosis after photochemical injury. In contrast, the neointimal area after vascular injury caused by complete ligation of the common carotid artery was significantly greater in MsrA-deficient than in control mice. In aortic vascular smooth muscle cells lacking MsrA, cell proliferation was significantly increased because of accelerated G1/S transition. In parallel, cyclin D1 protein and cdk4/cyclin D1 complex formation and activity were increased in MsrA-deficient vascular smooth muscle cell, leading to enhanced retinoblastoma protein phosphorylation and transcription of E2F. Finally, MsrA-deficient vascular smooth muscle cell exhibited greater activation of extracellular signal-regulated kinase 1/2 that was caused by increased activity of the Ras/rapidly accelerated fibrosarcoma/mitogen-activated protein kinase signaling pathway.Conclusions—Our findings implicate MsrA as a negative regulator of vascular smooth muscle cell proliferation and neointimal hyperplasia after vascular injury through control of the Ras/rapidly accelerated fibrosarcoma/mitogen-activated protein kinase kinase/extracellular signal-regulated kinase 1/2 signaling pathway.
Epigenetic Control of Smooth Muscle Cell Identity and Lineage Memory [ATVB in Focus: Epigenetics of Cardiovascular Disease]Vascular smooth muscle cells (SMCs), like all cells, acquire a cell-specific epigenetic signature during development that includes acquisition of a unique repertoire of histone and DNA modifications. These changes are postulated to induce an open chromatin state (referred to as euchromatin) on the repertoire of genes that are expressed in differentiated SMC, including SMC-selective marker genes like Acta2 and Myh11, as well as housekeeping genes expressed by most cell types. In contrast, genes that are silenced in differentiated SMC acquire modifications associated with a closed chromatin state (ie, heterochromatin) and transcriptional silencing. Herein, we review mechanisms that regulate epigenetic control of the differentiated state of SMC. In addition, we identify some of the major limitations in the field and future challenges, including development of innovative new tools and approaches, for performing single-cell epigenetic assays and locus-selective editing of the epigenome that will allow direct studies of the functional role of specific epigenetic controls during development, injury repair, and disease, including major cardiovascular diseases, such as atherosclerosis, hypertension, and microvascular disease, associated with diabetes mellitus.
Epac1 Deficiency Attenuated Vascular Smooth Muscle Cell Migration and Neointimal Formation [Original Research]Objective—Vascular smooth muscle cell (SMC) migration causes neointima, which is related to vascular remodeling after mechanical injury and atherosclerosis development. We previously reported that an exchange protein activated by cAMP (Epac) 1 was upregulated in mouse arterial neointima and promoted SMC migration. In this study, we examined the molecular mechanisms of Epac1-induced SMC migration and the effect of Epac1 deficiency on vascular remodeling in vivo.Approach and Results—Platelet-derived growth factor-BB promoted a 2-fold increase in SMC migration in a primary culture of aortic SMCs obtained from Epac1+/+ mice (Epac1+/+-ASMCs), whereas there was only a 1.2-fold increase in Epac1–/–-ASMCs. The degree of platelet-derived growth factor-BB–induced increase in intracellular Ca2+ was smaller in Fura2-labeled Epac1–/–-ASMCs than in Epac1+/+-ASMCs. In Epac1+/+-ASMCs, an Epac-selective cAMP analog or platelet-derived growth factor-BB increased lamellipodia accompanied by cofilin dephosphorylation, which is induced by Ca2+ signaling, whereas these effects were rarely observed in Epac1–/–-ASMCs. Furthermore, 4 weeks after femoral artery injury, prominent neointima were formed in Epac1+/+ mice, whereas neointima formation was significantly attenuated in Epac1–/– mice in which dephosphorylation of cofilin was inhibited. The chimeric mice generated by bone marrow cell transplantation from Epac1+/+ into Epac1–/– mice and vice versa demonstrated that the genetic background of vascular tissues, including SMCs rather than of bone marrow–derived cells affected Epac1-mediated neointima formation.Conclusions—These data suggest that Epac1 deficiency attenuates neointima formation through, at least in part, inhibition of SMC migration, in which a decrease in Ca2+ influx and a suppression of cofilin-mediated lamellipodia formation occur.
Novel CREB3L3 Nonsense Mutation in a Family With Dominant Hypertriglyceridemia [Original Research]Objective—Cyclic AMP responsive element–binding protein 3–like 3 (CREB3L3) is a novel candidate gene for dominant hypertriglyceridemia. To date, only 4 kindred with dominant hypertriglyceridemia have been found to be carriers of 2 nonsense mutations in CREB3L3 gene (245fs and W46X). We investigated a family in which hypertriglyceridemia displayed an autosomal dominant pattern of inheritance.Approach and Results—The proband was a 49-year-old woman with high plasma triglycerides (≤1300 mg/dL; 14.68 mmol/L). Her father had a history of moderate hypertriglyceridemia, and her 51-year-old brother had triglycerides levels as high as 1600 mg/dL (18.06 mmol/L). To identify the causal mutation in this family, we analyzed the candidate genes of recessive and dominant forms of primary hypertriglyceridemia by direct sequencing. The sequencing of CREB3L3 gene led to the discovery of a novel minute frame shift mutation in exon 3 of CREB3L3 gene, predicted to result in the formation of a truncated protein devoid of function (c.359delG–p.K120fsX20). Heterozygosity for the c.359delG mutation resulted in a severe phenotype in the proband, and her brother with a late in life expression and a good response to diet and a hypotriglyceridemic treatment. The same mutation was detected in a 13-year-old daughter who to date is normotriglyceridemic.Conclusions—We have identified a novel pathogenic mutation in CREB3L3 gene in a family with dominant hypertriglyceridemia with a variable pattern of penetrance.

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου