Abstract
Dioxins and dioxin-like compounds can be analyzed by bioanalytical screening methods to evaluate their biotoxicity. In vitro bioassays, based on 7-ethoxyresorufin-O-deethylase (EROD) and the activity of cytochrome P450 1A1 and the aryl hydrogen receptor (AhR) pathway, are employed for the evaluation of bioanalytical equivalents (BEQ) of polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), and polychlorinated biphenyls (PCBs) from a wide variety of sample matrices. Here, we present the evaluation of 11 humic soil samples derived from forest stands across Germany and a comparison of the BEQ values against toxic equivalents (TEQ, PCDD/Fs+PCBs) derived by chemical analysis. BEQ values ranged from 8.8 to 34.1 while TEQ values from 13.9 to 60.5 pg/g dry weight. Additional two subsequent mineral layers were analyzed to identify the BEQ/TEQ gradient vertically, showing a TEQ decrease of 85.1 and 93.8 % from the humic to the first and second mineral layers, respectively. For BEQ values, a decrease as well as an increase was detected. BEQ measurements were performed with and without sample clean-up. Omitting clean-up revealed about 20 times increased BEQ values presumably due to non-persistent bioactive compounds not detected by chemical analysis. The results we present suggest that the EROD assay can be used for the screening of large sample quantities for the identification of samples showing dioxin and dioxin-like contaminations even at low levels, which can then be further analyzed by chemical analysis to identify the congener composition. The study also shows that EROD results give a qualitative image of the contamination. EROD seems to be interfered with cross-contaminants specifically for soils with high biological activity as forest layers.
http://ift.tt/2crj89y
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου