Αρχειοθήκη ιστολογίου

Αλέξανδρος Γ. Σφακιανάκης
ΩτοΡινοΛαρυγγολόγος
Αναπαύσεως 5
Άγιος Νικόλαος Κρήτη 72100
2841026182
6032607174

Τρίτη 28 Μαρτίου 2017

Developing a risk stratification tool for audit of outcome after surgery for head and neck squamous cell carcinoma

Abstract

Background

Patients treated surgically for head and neck squamous cell carcinoma (HNSCC) represent a heterogeneous group. Adjusting for patient case mix and complexity of surgery is essential if reporting outcomes represent surgical performance and quality of care.

Methods

A case note audit totaling 1075 patients receiving 1218 operations done for HNSCC in 4 cancer networks was completed. Logistic regression, decision tree analysis, an artificial neural network, and Naïve Bayes Classifier were used to adjust for patient case-mix using pertinent preoperative variables.

Results

Thirty-day complication rates varied widely (34%-51%; P < .015) between units. The predictive models allowed risk stratification. The artificial neural network demonstrated the best predictive performance (area under the curve [AUC] 0.85).

Conclusion

Early postoperative complications are a measurable outcome that can be used to benchmark surgical performance and quality of care. Surgical outcome reporting in national clinical audits should be taking account of the patient case mix.



http://ift.tt/2ntKLRp

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου