Αρχειοθήκη ιστολογίου

Αλέξανδρος Γ. Σφακιανάκης
ΩτοΡινοΛαρυγγολόγος
Αναπαύσεως 5
Άγιος Νικόλαος Κρήτη 72100
2841026182
6032607174

Παρασκευή 21 Απριλίου 2017

Impact of combined CO 2 laser irradiation and fluoride on enamel and dentin biofilm-induced mineral loss

Abstract

Objectives

The caries-protective effects of CO2 laser irradiation on dental enamel have been demonstrated using chemical demineralization models. We compared the effect of CO2 laser irradiation, sodium fluoride, or both on biofilm-induced mineral loss (∆Z) and Streptococcus mutans adhesion to enamel and dentin in vitro.

Materials and methods

Ground, polished bovine enamel, and dentin samples were allocated to four groups (n = 12/group): no treatment (C); single 22,600-ppm fluoride (F) varnish (5 % NaF) application; single CO2 laser treatment (L) with short pulses (5 μs/λ = 10.6 μm); and laser and subsequent fluoride treatment (LF). Samples were sterilized and submitted to an automated mono-species S. mutans biofilm model. Brain heart infusion plus 5 % sucrose medium was provided eight times daily, followed by rinses with artificial saliva. After 10 days, bacterial numbers in biofilms were enumerated as colony-forming units/ml (CFU/ml) (n = 7/group). ∆Z was assessed using transversal microradiography (n = 12/group). Univariate ANOVA with post hoc Tukey honestly-significant-difference test was used for statistical analysis.

Results

Bacterial numbers were significantly higher on dentin than enamel (p < 0.01/ANOVA). On dentin, LF yielded significantly lower CFUs than other groups (p = 0.03/Tukey), while no differences between groups were found for enamel. The lowest ∆Z in enamel was observed for L (mean/SD 2036/1353 vol%×μm), which was not only significantly lower than C (9642/2452 vol%×μm) and F (7713/1489 vol%×μm) (p < 0.05) but also not significantly different from LF (3135/2628 vol%×μm) (p > 0.05). In dentin, only LF (163/227) significantly reduced ∆Z (p < 0.05).

Conclusion/clinical relevance

CO2 laser irradiation did not increase adhesion of S. mutans in vitro. Laser treatment alone protected enamel against biofilm-induced demineralization, while a combined laser-fluoride application was required to protect dentin.



http://ift.tt/2oXfA1q

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου