Abstract
Objective
The objective of the study was to investigate the tensile bond strength (TBS) to polyaryletheretherketone (PEEK) after different pretreatment and conditioning methods.
Methods
Four hundred PEEK specimens were fabricated and allocated to the following air-abrasion methods (n 1 = 80/pretreatment): (i) 50 μm Al2O3 (0.05 MPa); (ii) 50 μm Al2O3 (0.35 MPa); (iii) 110 μm Al2O3 (0.05 MPa); (iv) 110 μm Al2O3 (0.35 MPa); and (v) Rocatec 110 μm (0.28 MPa). These pretreatments were combined with the following conditioning methods (n 2 = 20/pretreatment/conditioning): (a) visio.link (VL); (b) Monobond Plus/Heliobond (MH); (c) Scotchbond Universal (SU); and (d) dialog bonding fluid (DB). After veneering of all specimens with dialog occlusal and aging (28 days H2O, 37 °C + 20,000 thermal cycles, 5/55 °C), TBS was measured. Data was analysed using Kaplan–Meier survival analysis with Breslow–Gehan test and Cox-regressions.
Results
The major impact on TBS showed the conditioning, followed by the air-abrasion-pressure, while the grain size of the air-abrasion powder did not show any effect. Specimens air-abraded at 0.35 MPa showed the highest survival rates. However, within VL groups, this observation was not statistically significant. Within MH groups, pretreatment using 110 μm Al2O3 and 0.05 MPa resulted in higher survival rates compared to groups treated with 50 and 110 μm Al2O3 using a pressure of 0.35 MPa. The use of VL showed the highest survival rates between the adhesive systems and the TBS values higher than 25 MPa independent of the pretreatment method. As an exception, only VL showed significantly higher survival rates when compared to MH.
Conclusions
The adequate choice of the adhesive system and higher pressures improved the TBS between PEEK and veneering resin composite. The particle size had no major impact.
Clinical relevance
According to this study, best veneering of PEEK with dialog occlusal can be achieved by conditioning with visio.link in combination with the pretreatment of airborne particle abrasion at a pressure of 0.35 MPa.
http://ift.tt/2EFXVXn
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου