Publication date: Available online 1 May 2018
Source: Journal of Cranio-Maxillofacial Surgery
Author(s): Lucas M. Ritschl, Florian D. Grill, Fabienna Mittermeier, Daniel Lonic, Klaus-Dietrich Wolff, Maximilian Roth, Denys J. Loeffelbein
Abstract
Background
Three-dimensional (3D) photogrammetry has reached high standards and accuracy but is mainly conducted with stationary and expensive systems. The purpose of this study was to evaluate the accuracy of a low-budget portable system with special regard to the gracile and challenging nasal region.
Material and Methods
3D models of the perinasal area were acquired by impression-taking and the scanning of the generated plaster models (3Shape D500) or with a portable low-budget 3D stereophotogrammetry (FUEL3D® SCANIFY®) system. Four examiners analysed defined landmarks of the generated Standard Tessellation Language files with regard to accuracy and interobserver reliability by using 3dMDvultus™ software. A semi-automatic 3D best-fit analysis of both models was performed by using Geomagic® and the Root Mean Squared (RMS) errors were calculated.
Results
41 volunteers were included, with 22 perinasal and perioral landmarks, 15 3D distances and eight 3D angles being analysed per data set. In a point-based analysis the mean spreads were partially smaller in the plaster model scans. Most measurements showed very high (>0.8) to excellent (>0.9) intraclass correlation coefficients, the lowest being found for columella length (0.686) and left nostril width (0.636). Overall, the mean RMS error between the superimposed surfaces was 0.89 ± 0.22 mm in the best-fit analysis.
Conclusions
The corresponding software program was operator-friendly. The findings indicate that the analysed, affordable and portable system is a feasible solution for 3D image acquisition with comparable accuracy reported in the literature. Further studies will analyse the feasibility in neonates.
https://ift.tt/2DnqUhF
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου