Αρχειοθήκη ιστολογίου

Αλέξανδρος Γ. Σφακιανάκης
ΩτοΡινοΛαρυγγολόγος
Αναπαύσεως 5
Άγιος Νικόλαος Κρήτη 72100
2841026182
6032607174

Δευτέρα 9 Νοεμβρίου 2020

Resilient EMG Classification to Enable Reliable Upper-Limb Movement Intent Detection

alkiviadis.1961 shared this article with you from Inoreader
Reliable control of assistive devices using surface electromyography (sEMG) remains an unsolved task due to the signal's stochastic behavior that prevents robust pattern recognition for real-time control. Non-representative samples lead to inherent class overlaps that generate classification ripples for which the most common alternatives rely on post-processing and sample discard methods that insert additional delays and often do not offer substantial improvements. In this paper, a resilient classification pipeline based on Extreme Learning Machines (ELM) was used to classify 17 different upper-limb movements through sEMG signals from a total of 99 trials derived from three different databases. The method was compared to a baseline ELM and a sample discarding (DISC) method and proved to generate more stable and consistent classifications. The average accuracy boost of ≈ 10% in all databases lead to average weighted accuracy rates higher as 53,4% for amputees and 89,0% for n on-amputee volunteers. The results match or outperform related works even without sample discards.
View on the web

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου