Αρχειοθήκη ιστολογίου

Αλέξανδρος Γ. Σφακιανάκης
ΩτοΡινοΛαρυγγολόγος
Αναπαύσεως 5
Άγιος Νικόλαος Κρήτη 72100
2841026182
6032607174

Παρασκευή 10 Φεβρουαρίου 2023

Immunogenicity of novel DNA vaccines encoding receptor‐binding domain (RBD) dimer‐Fc fusing antigens derived from different SARS‐CoV‐2 variants of concern

alexandrossfakianakis shared this article with you from Inoreader

Abstract

The continuously emerging of SARS-CoV-2 variants of concern (VOCs) led to a decline in effectiveness of the first-generation vaccines. Therefore, optimized vaccines and vaccination strategies, which show advantages in protecting against VOCs, are urgently needed. Here we constructed an optimized DNA vaccine plasmid containing built-in CpG adjuvant, and designed vaccine candidates encoding five forms of antigens derived from Wuhan-Hu-1. The results showed that plasmid with RBD dimer-Fc fusing antigen (2RBD-Fc) induced the highest level of RBD-specific IgG and neutralizing antibodies in mice. Then 2dRBD-Fc and 2omRBD-Fc vaccines, respectively derived from delta and omicron VOCs, were constructed. The 2dRBD-Fc induced potent humoral and cellular immune responses, while the immunogenicity of 2omRBD-Fc was low. We also observed that sequential immunization with 2RBD-Fc, 2dRBD-Fc and 2omRBD-Fc effectively elicited neutralizing antibodies against each immunized strain, and RBD-specific T cell responses. To be noted, the Wuhan-Hu-1, delta and omicron neutralizing antibody titers induced by sequential immunization were comparable to that induced by repetitive immunization with 2RBD-Fc, 2dRBD-Fc or 2omRBD-Fc respectively. The results suggest that sequential immunization with DNA vaccines encoding potent antigens derived from different VOCs, may be a promising strategy to elicit immune responses against multiple variants.

This article is protected by copyright. All rights reserved.

View on Web

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου