Contents Page |
Cover Page |
Editorial Board |
Subscription Page |
Programmed death ligand 1 (PD-L1) as an immunotherapy target in patients with glioblastoma |
Predictive imaging marker of bevacizumab efficacy: perfusion MRI |
Highlights from the Literature |
Toward precision medicine in glioblastoma: the promise and the challenges Integrated sequencing strategies have provided a broader understanding of the genomic landscape and molecular classifications of multiple cancer types and have identified various therapeutic opportunities across cancer subsets. Despite pivotal advances in the characterization of genomic alterations in glioblastoma, targeted agents have shown minimal efficacy in clinical trials to date, and patient survival remains poor. In this review, we highlight potential reasons why targeting single alterations has yielded limited clinical efficacy in glioblastoma, focusing on issues of tumor heterogeneity and pharmacokinetic failure. We outline strategies to address these challenges in applying precision medicine to glioblastoma and the rationale for applying targeted combination therapy approaches that match genomic alterations with compounds accessible to the central nervous system. |
Programmed death ligand 1 expression and tumor-infiltrating lymphocytes in glioblastoma Background Immune checkpoint inhibitors targeting programmed cell death 1 (PD1) or its ligand (PD-L1) showed activity in several cancer types. MethodsWe performed immunohistochemistry for CD3, CD8, CD20, HLA-DR, phosphatase and tensin homolog (PTEN), PD-1, and PD-L1 and pyrosequencing for assessment of the O6-methylguanine-methyltransferase (MGMT) promoter methylation status in 135 glioblastoma specimens (117 initial resection, 18 first local recurrence). PD-L1 gene expression was analyzed in 446 cases from The Cancer Genome Atlas. ResultsDiffuse/fibrillary PD-L1 expression of variable extent, with or without interspersed epithelioid tumor cells with membranous PD-L1 expression, was observed in 103 of 117 (88.0%) newly diagnosed and 13 of 18 (72.2%) recurrent glioblastoma specimens. Sparse-to-moderate density of tumor-infiltrating lymphocytes (TILs) was found in 85 of 117 (72.6%) specimens (CD3+ 78/117, 66.7%; CD8+ 52/117, 44.4%; CD20+ 27/117, 23.1%; PD1+ 34/117, 29.1%). PD1+ TIL density correlated positively with CD3+ (P < .001), CD8+ (P < .001), CD20+ TIL density (P < .001), and PTEN expression (P = .035). Enrichment of specimens with low PD-L1 gene expression levels was observed in the proneural and G-CIMP glioblastoma subtypes and in specimens with high PD-L1 gene expression in the mesenchymal subtype (P = 5.966e-10). No significant differences in PD-L1 expression or TIL density between initial and recurrent glioblastoma specimens or correlation of PD-L1 expression or TIL density with patient age or outcome were evident. ConclusionTILs and PD-L1 expression are detectable in the majority of glioblastoma samples but are not related to outcome. Because the target is present, a clinical study with specific immune checkpoint inhibitors seems to be warranted in glioblastoma. |
Inhibition of intracerebral glioblastoma growth by targeting the insulin-like growth factor 1 receptor involves different context-dependent mechanisms Background Signaling by insulin-like growth factor 1 receptor (IGF-1R) can contribute to the formation and progression of many diverse tumor types, including glioblastoma. We investigated the effect of the IGF-1R blocking antibody IMC-A12 on glioblastoma growth in different in vivo models. MethodsU87 cells were chosen to establish rapidly growing, angiogenesis-dependent tumors in the brains of nude mice, and the GS-12 cell line was used to generate highly invasive tumors. IMC-A12 was administered using convection-enhanced local delivery. Tumor parameters were quantified histologically, and the functional relevance of IGF-1R activation was analyzed in vitro. ResultsIMC-A12 treatment inhibited the growth of U87 and GS-12 tumors by 75% and 50%, respectively. In GS-12 tumors, the invasive tumor extension and proliferation rate were significantly reduced by IMC-A12 treatment, while apoptosis was increased. In IMC-A12–treated U87 tumors, intratumoral vascularization was markedly decreased, and tumor cell proliferation was moderately reduced. Flow cytometry showed that <2% of U87 cells but >85% of GS-12 cells expressed IGF-1R. Activation of IGF-1R by IGF-1 and IGF-2 in GS-12 cells was blocked by IMC-A12. Both ligands stimulated GS-12 cell proliferation, and IGF-2 also stimulated migration. IMC-A12 inhibited these stimulatory effects and increased apoptosis. In U87 cells, stimulation with either ligand had no functional effect. ConclusionsIGF-1R blockade can inhibit glioblastoma growth by different mechanisms, including direct effects on the tumor cells as well as indirect anti-angiogenic effects. Hence, blocking IGF-1R may be useful to target both the highly proliferative, angiogenesis-dependent glioblastoma core component as well as the infiltrative periphery. |
Αρχειοθήκη ιστολογίου
-
►
2023
(256)
- ► Φεβρουαρίου (140)
- ► Ιανουαρίου (116)
-
►
2022
(1695)
- ► Δεκεμβρίου (78)
- ► Σεπτεμβρίου (142)
- ► Φεβρουαρίου (155)
-
►
2021
(5507)
- ► Δεκεμβρίου (139)
- ► Σεπτεμβρίου (333)
- ► Φεβρουαρίου (628)
-
►
2020
(1810)
- ► Δεκεμβρίου (544)
- ► Σεπτεμβρίου (32)
- ► Φεβρουαρίου (28)
-
►
2019
(7684)
- ► Δεκεμβρίου (18)
- ► Σεπτεμβρίου (53)
- ► Φεβρουαρίου (2841)
- ► Ιανουαρίου (2803)
-
►
2018
(31838)
- ► Δεκεμβρίου (2810)
- ► Σεπτεμβρίου (2870)
- ► Φεβρουαρίου (2420)
- ► Ιανουαρίου (2395)
-
►
2017
(31987)
- ► Δεκεμβρίου (2460)
- ► Σεπτεμβρίου (2605)
- ► Φεβρουαρίου (2785)
- ► Ιανουαρίου (2830)
-
►
2016
(5308)
- ► Δεκεμβρίου (2118)
- ► Σεπτεμβρίου (877)
- ► Φεβρουαρίου (41)
- ► Ιανουαρίου (39)
-
▼
2015
(1021)
- ► Δεκεμβρίου (38)
- ► Σεπτεμβρίου (213)
-
▼
Αυγούστου
(714)
-
▼
Αυγ 12
(27)
- ! ORL via Alexandros G.Sfakianakis on Inoreader: 2...
- ! ORL via Alexandros G.Sfakianakis on Inoreader: C...
- ! ORL via Alexandros G.Sfakianakis on Inoreader: I...
- ! ORL via Alexandros G.Sfakianakis on Inoreader: S...
- ! ORL via Alexandros G.Sfakianakis on Inoreader: C...
- ! ORL via Alexandros G.Sfakianakis on Inoreader: P...
- ! ORL via Alexandros G.Sfakianakis on Inoreader: T...
- ! ORL via Alexandros G.Sfakianakis on Inoreader: C...
- ! ORL via Alexandros G.Sfakianakis on Inoreader: H...
- ! ORL via Alexandros G.Sfakianakis on Inoreader: A...
- ! ORL via Alexandros G.Sfakianakis on Inoreader: A...
- ! ORL via Alexandros G.Sfakianakis on Inoreader: P...
- ! ORL via Alexandros G.Sfakianakis on Inoreader: A...
- ! ORL via Alexandros G.Sfakianakis on Inoreader: T...
- ! ORL via Alexandros G.Sfakianakis on Inoreader: T...
- ! ORL via Alexandros G.Sfakianakis on Inoreader: F...
- ! ORL via Alexandros G.Sfakianakis on Inoreader: E...
- ! ORL via Alexandros G.Sfakianakis on Inoreader: S...
- ! ORL via Alexandros G.Sfakianakis on Inoreader: T...
- ! ORL via Alexandros G.Sfakianakis on Inoreader: C...
- ! ORL via Alexandros G.Sfakianakis on Inoreader: M...
- European Archives of Oto-Rhino-Laryngology
- ! ORL via Alexandros G.Sfakianakis on Inoreader: M...
- ! ORL via Alexandros G.Sfakianakis on Inoreader: E...
- Plastic and Reconstructive Surgery – Global Open
- NeuroOncology
- ! ORL via Alexandros G.Sfakianakis on Inoreader: S...
-
▼
Αυγ 12
(27)
Αλέξανδρος Γ. Σφακιανάκης
ΩτοΡινοΛαρυγγολόγος
Αναπαύσεως 5
Άγιος Νικόλαος Κρήτη 72100
2841026182
6032607174
Τετάρτη 12 Αυγούστου 2015
NeuroOncology
Εγγραφή σε:
Σχόλια ανάρτησης (Atom)
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου