Abstract
The aim of this study was to reveal a potential key gene network associated with seasonal allergic rhinitis (SAR). The microarray data GSE50101 downloaded from Gene Expression Omnibus were used to screen differentially expressed genes (DEGs) between SAR patients and healthy controls. Then, functional enrichment analysis was conducted using Database for Annotation, Visualization, and Integrated Discovery. Afterwards, the protein–protein interactions (PPIs) of DEGs were obtained from STRING, and the PPI network was constructed. In addition, the PPI network module was analyzed. In total, 98 up-regulated and 63 down-regulated DEGs were identified from the SAR samples, comparing the healthy controls. The up-regulated DEGs were mainly enriched in the Gene Ontology terms about cell death (e.g., DUSP1 and JUN) and pathways related to immune (e.g., FOS and JUN). The down-regulated DEGs were mainly enriched in regulation of transcription (e.g., CEBPD and SCML1). In the PPI network, a set of genes was predicted to interact with each other, such as FOS, JUN, and CEBPD. Furthermore, genes in the network module (e.g., FOS, JUN and CEBPD) was mainly enriched in regulation of transcription, and pathways about immune, such as mitogen-activated protein kinase signaling pathway, B cell receptor signaling pathway, and toll-like receptor signaling pathway. Several genes related to immunity and regulation of transcription, such as FOS, JUN, and CEBPD, may play crucial roles during the process of SAR through the interactions with each other.
http://ift.tt/2jB2yTr
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου