The human invariant NK (iNK) TCR is largely composed of the invariant TCR Vα24-Jα18 chain and semivariant TCR Vβ11 chains with variable CDR3β sequences. The direct role of CDR3β in Ag recognition has been studied extensively. Although it was noted that CDR3β can interact with CDR3α, how this interaction might indirectly influence Ag recognition is not fully elucidated. We observed that the third position of Vβ11 CDR3 can encode an Arg or Ser residue as a result of somatic rearrangement. Clonotypic analysis of the two iNK TCR types with a single amino acid substitution revealed that the staining intensity by anti-Vα24 Abs depends on whether Ser or Arg is encoded. When stained with an anti–Vα24-Jα18 Ab, human primary invariant NKT cells could be divided into Vα24 low- and high-intensity subsets, and Arg-encoding TCR Vβ11 chains were more frequently isolated from the Vα24 low-intensity subpopulation compared with the Vα24 high-intensity subpopulation. The Arg/Ser substitution also influenced Ag recognition as determined by CD1d multimer staining and CD1d-restricted functional responses. Importantly, in silico modeling validated that this Ser-to-Arg mutation could alter the structure of the CDR3β loop, as well as the CDR3α loop. Collectively, these results indicate that the Arg/Ser encoded at the third CDR3β residue can effectively modulate the overall structure of, and Ag recognition by, human iNK TCRs.
http://ift.tt/2iXJ6Ew
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου