Αρχειοθήκη ιστολογίου

Αλέξανδρος Γ. Σφακιανάκης
ΩτοΡινοΛαρυγγολόγος
Αναπαύσεως 5
Άγιος Νικόλαος Κρήτη 72100
2841026182
6032607174

Παρασκευή 21 Δεκεμβρίου 2018

Epigenome-wide Meta-analysis of DNA Methylation and Childhood Asthma

Publication date: Available online 21 December 2018

Source: Journal of Allergy and Clinical Immunology

Author(s): Sarah E. Reese, Cheng-Jian Xu, Herman T. den Dekker, Mi Kyeong Lee, Sinjini Sikdar, Carlos Ruiz-Arenas, Simon K. Merid, Faisal I. Rezwan, Christian M. Page, Vilhelmina Ullemar, Phillip E. Melton, Sam S. Oh, Ivana V. Yang, Kimberley Burrows, Cilla Söderhäll, Dereje D. Jima, Lu Gao, Ryan Arathimos, Leanne K. Küpers, Matthias Wielscher

Abstract
Background

Epigenetic mechanisms, including methylation, may contribute to childhood asthma. Identifying DNA methylation profiles in asthma may inform disease pathogenesis.

Objective

To identify differential DNA methylation in newborns and children related to childhood asthma.

Methods

Within the Pregnancy And Childhood Epigenetics (PACE) consortium, we performed epigenome-wide meta-analyses of school-age asthma in relation to CpG methylation (Illumina450K) in blood measured either in newborns, in prospective analyses, or cross-sectionally, in school-age children. We also identified differentially methylated regions (DMRs).

Results

In newborns (8 cohorts, 668 cases), 9 CpGs (and 35 regions) were differentially methylated (epigenome-wide significance, FDR<0.05) in relation to asthma development. In cross-sectional meta-analysis of asthma and methylation in children (9 cohorts, 631 cases), we identified 179 CpGs (FDR<0.05) and 36 differentially methylated regions. In replication studies of methylation in other tissues, most of the 179 CpGs discovered in blood replicated, despite smaller sample sizes, in studies of nasal respiratory epithelium or eosinophils. Pathway analyses highlighted enrichment for asthma-relevant immune processes and overlap in pathways enriched both in newborns and children. Gene expression correlated with methylation at most loci. Functional annotation supports regulatory impact on gene expression at many asthma-associated CpGs. Several implicated genes are targets for approved or experimental drugs, including IL5RA and KCNH2.

Conclusion

Novel loci differentially methylated in newborns represent potential biomarkers of risk of developing asthma by school age. Cross-sectional associations in children may reflect both risk for and effects of disease. Asthma-related differential methylation in blood in children substantially replicated in eosinophils and respiratory epithelium.



http://bit.ly/2UWj2cp

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου