Αρχειοθήκη ιστολογίου

Αλέξανδρος Γ. Σφακιανάκης
ΩτοΡινοΛαρυγγολόγος
Αναπαύσεως 5
Άγιος Νικόλαος Κρήτη 72100
2841026182
6032607174

Τετάρτη 15 Μαΐου 2019

Neuroscience

This Week in The Journal


A Hypothetical Model Concerning How Spike-Timing-Dependent Plasticity Contributes to Neural Circuit Formation and Initiation of the Critical Period in Barrel Cortex

Spike timing is an important factor in the modification of synaptic strength. Various forms of spike timing-dependent plasticity (STDP) occur in the brains of diverse species, from insects to humans. In unimodal STDP, only LTP or LTD occurs at the synapse, regardless of which neuron spikes first; the magnitude of potentiation or depression increases as the time between presynaptic and postsynaptic spikes decreases. This from of STDP may promote developmental strengthening or weakening of early projections. In bidirectional Hebbian STDP, the magnitude and the sign (potentiation or depression) of plasticity depend, respectively, on the timing and the order of presynaptic and postsynaptic spikes. In the rodent barrel cortex, multiple forms of STDP appear sequentially during development, and they contribute to network formation, retraction, or fine-scale functional reorganization. Hebbian STDP appears at L4-L2/3 synapses starting at postnatal day (P) 15; the synapses exhibit unimodal "all-LTP STDP" before that age. The appearance of Hebbian STDP at L4-L2/3 synapses coincides with the maturation of parvalbumin-containing GABA interneurons in L4, which contributes to the generation of L4-before-L2/3 spiking in response to thalamic input by producing fast feedforward suppression of both L4 and L2/3 cells. After P15, L4-L2/3 STDP mediates fine-scale circuit refinement, essential for the critical period in the barrel cortex. In this review, we first briefly describe the relevance of STDP to map plasticity in the barrel cortex, then look over roles of distinct forms of STDP during development. Finally, we propose a hypothesis that explains the transition from network formation to the initiation of the critical period in the barrel cortex.



Mitotic Motor KIFC1 Is an Organizer of Microtubules in the Axon

KIFC1 (also called HSET or kinesin-14a) is best known as a multifunctional motor protein essential for mitosis. The present studies are the first to explore KIFC1 in terminally postmitotic neurons. Using RNA interference to partially deplete KIFC1 from rat neurons (from animals of either gender) in culture, pharmacologic agents that inhibit KIFC1, and expression of mutant KIFC1 constructs, we demonstrate critical roles for KIFC1 in regulating axonal growth and retraction as well as growth cone morphology. Experimental manipulations of KIFC1 elicit morphological changes in the axon as well as changes in the organization, distribution, and polarity orientation of its microtubules. Together, the results indicate a mechanism by which KIFC1 binds to microtubules in the axon and slides them into alignment in an ATP-dependent fashion and then cross-links them in an ATP-independent fashion to oppose their subsequent sliding by other motors.

SIGNIFICANCE STATEMENT Here, we establish that KIFC1, a molecular motor well characterized in mitosis, is robustly expressed in neurons, where it has profound influence on the organization of microtubules in a number of different functional contexts. KIFC1 may help answer long-standing questions in cellular neuroscience such as, mechanistically, how growth cones stall and how axonal microtubules resist forces that would otherwise cause the axon to retract. Knowledge about KIFC1 may help researchers to devise strategies for treating disorders of the nervous system involving axonal retraction given that KIFC1 is expressed in adult neurons as well as developing neurons.



Intracellular Zn2+ Signaling Facilitates Mossy Fiber Input-Induced Heterosynaptic Potentiation of Direct Cortical Inputs in Hippocampal CA3 Pyramidal Cells

Repetitive action potentials (APs) in hippocampal CA3 pyramidal cells (CA3-PCs) backpropagate to distal apical dendrites, and induce calcium and protein tyrosine kinase (PTK)-dependent downregulation of Kv1.2, resulting in long-term potentiation of direct cortical inputs and intrinsic excitability (LTP-IE). When APs were elicited by direct somatic stimulation of CA3-PCs from rodents of either sex, only a narrow window of distal dendritic [Ca2+] allowed LTP-IE because of Ca2+-dependent coactivation of PTK and protein tyrosine phosphatase (PTP), which renders non-mossy fiber (MF) inputs incompetent in LTP-IE induction. High-frequency MF inputs, however, could induce LTP-IE at high dendritic [Ca2+] of the window. We show that MF input-induced Zn2+ signaling inhibits postsynaptic PTP, and thus enables MF inputs to induce LTP-IE at a wide range of [Ca2+]ivalues. Extracellular chelation of Zn2+ or genetic deletion of vesicular zinc transporter abrogated the privilege of MF inputs for LTP-IE induction. Moreover, the incompetence of somatic stimulation was rescued by the inhibition of PTP or a supplement of extracellular zinc, indicating that MF input-induced increase in dendritic [Zn2+] facilitates the induction of LTP-IE by inhibiting PTP. Consistently, high-frequency MF stimulation induced immediate and delayed elevations of [Zn2+] at proximal and distal dendrites, respectively. These results indicate that MF inputs are uniquely linked to the regulation of direct cortical inputs owing to synaptic Zn2+ signaling.

SIGNIFICANCE STATEMENT Zn2+ has been mostly implicated in pathological processes, and the physiological roles of synaptically released Zn2+ in intracellular signaling are little known. We show here that Zn2+ released from hippocampal mossy fiber (MF) terminals enters postsynaptic CA3 pyramidal cells, and plays a facilitating role in MF input-induced heterosynaptic potentiation of perforant path (PP) synaptic inputs through long-term potentiation of intrinsic excitability (LTP-IE). We show that the window of cytosolic [Ca2+] that induces LTP-IE is normally very narrow because of the Ca2+-dependent coactivation of antagonistic signaling pairs, whereby non-MF inputs become ineffective in inducing excitability change. The MF-induced Zn2+ signaling, however, biases toward facilitating the induction of LTP-IE. The present study elucidates why MF inputs are more privileged for the regulation of PP synapses.



Axonal Degeneration Is Mediated by Necroptosis Activation

Axonal degeneration, which contributes to functional impairment in several disorders of the nervous system, is an important target for neuroprotection. Several individual factors and subcellular events have been implicated in axonal degeneration, but researchers have so far been unable to identify an integrative signaling pathway activating this self-destructive process. Through pharmacological and genetic approaches, we tested whether necroptosis, a regulated cell-death mechanism implicated in the pathogenesis of several neurodegenerative diseases, is involved in axonal degeneration. Pharmacological inhibition of the necroptotic kinase RIPK1 using necrostatin-1 strongly delayed axonal degeneration in the peripheral nervous system and CNS of wild-type mice of either sex and protected in vitro sensory axons from degeneration after mechanical and toxic insults. These effects were also observed after genetic knock-down of RIPK3, a second key regulator of necroptosis, and the downstream effector MLKL (Mixed Lineage Kinase Domain-Like). RIPK1 inhibition prevented mitochondrial fragmentation in vitro and in vivo, a typical feature of necrotic death, and inhibition of mitochondrial fission by Mdivi also resulted in reduced axonal loss in damaged nerves. Furthermore, electrophysiological analysis demonstrated that inhibition of necroptosis delays not only the morphological degeneration of axons, but also the loss of their electrophysiological function after nerve injury. Activation of the necroptotic pathway early during injury-induced axonal degeneration was made evident by increased phosphorylation of the downstream effector MLKL. Our results demonstrate that axonal degeneration proceeds by necroptosis, thus defining a novel mechanistic framework in the axonal degenerative cascade for therapeutic interventions in a wide variety of conditions that lead to neuronal loss and functional impairment.

SIGNIFICANCE STATEMENT We show that axonal degeneration triggered by diverse stimuli is mediated by the activation of the necroptotic programmed cell-death program by a cell-autonomous mechanism. This work represents a critical advance for the field since it identifies a defined degenerative pathway involved in axonal degeneration in both the peripheral nervous system and the CNS, a process that has been proposed as an early event in several neurodegenerative conditions and a major contributor to neuronal death. The identification of necroptosis as a key mechanism for axonal degeneration is an important step toward the development of novel therapeutic strategies for nervous-system disorders, particularly those related to chemotherapy-induced peripheral neuropathies or CNS diseases in which axonal degeneration is a common factor.



A Human TRPA1-Specific Pain Model

The cation channel transient receptor potential ankyrin 1 (TRPA1) plays an important role in sensing potentially hazardous substances. However, TRPA1 species differences are substantial and limit translational research. TRPA1 agonists tested previously in humans also have other targets. Therefore, the sensation generated by isolated TRPA1 activation in humans is unknown. The availability of 2-chloro-N-(4-(4-methoxyphenyl)thiazol-2-yl)-N-(3-methoxypropyl)-acetamide (JT010), a potent and specific TRPA1 agonist, allowed us to explore this issue. To corroborate the specificity of JT010, it was investigated whether the TRPA1 antagonist (1E,3E)-1-(4-fluorophenyl)-2-methyl-1-penten-3-one oxime (A-967079) abolishes JT010-elicited pain. Sixteen healthy volunteers of both sexes rated pain due to intraepidermal injections of different concentrations and combinations of the substances. The study design was a double-blind crossover study. All subjects received all types of injections, including a placebo without substances. Injections of the TRPA1 agonist dose-dependently caused pain with a half-maximal effective concentration of 0.31 μm. Coinjection of A-967079 dose-dependently reduced and at a high concentration abolished JT010-induced pain. Quantification of JT010 by HPLC showed that a substantial part is adsorbed when in contact with polypropylene surfaces, but that this was overcome by handling in glass vials and injection using glass syringes. Isolated TRPA1 activation in humans causes pain. Thus, intradermal JT010 injection can serve as a tool to validate new TRPA1 antagonists concerning target engagement. More importantly, TRPA1-specific tools allow quantification of the TRPA1-dependent component in physiology and pathophysiology.

SIGNIFICANCE STATEMENT This study showed that activation of the ion channel transient receptor potential ankyrin 1 (TRPA1) alone indeed suffices to elicit pain in humans, independent of other receptors previously found to be involved in pain generation. The newly established TRPA1-specific pain model allows different applications. First, it can be tested whether diseases are associated with compromised or exaggerated TRPA1-dependent painful sensations in the skin. Second, it can be investigated whether a new, possibly systemically applied drug directed against TRPA1 engages its target in humans. Further, the general possibility of quantitative inhibition of TRPA1 allows identification of the TRPA1-dependent disease component, given that the substance reaches its target. This contributes to a better understanding of pathophysiology, can lay the basis for new therapeutic approaches, and can bridge the gap between preclinical research and clinical trials.



Developmental Remodeling of Thalamic Interneurons Requires Retinal Signaling

The dorsal lateral geniculate nucleus (dLGN) of the mouse is a model system to study the development of thalamic circuitry. Most studies focus on relay neurons of dLGN, yet little is known about the development of the other principal cell type, intrinsic interneurons. Here we examined whether the structure and function of interneurons relies on retinal signaling. We took a loss-of-function approach and crossed GAD67-GFP mice, which express GFP in dLGN interneurons, with math5 nulls (math5–/–), mutants that lack retinal ganglion cells and retinofugal projections. In vitro recordings and 3-D reconstructions of biocytin-filled interneurons at different postnatal ages showed their development is a multistaged process involving migration, arbor remodeling, and synapse formation. Arbor remodeling begins during the second postnatal week, after migration to and dispersion within dLGN is complete. This phase includes a period of exuberant branching where arbors grow in number, complexity, and field size. Such growth is followed by branch pruning and stabilization, as interneurons adopt a bipolar architecture. The absence of retinal signaling disrupts this process. The math5–/– interneurons fail to branch and prune, and instead maintain a simple, sparse architecture. To test how such defects influence connectivity with dLGN relay neurons, we used DHPG [(RS)-3,5-dihydroxyphenylglycine], the mGluR1,5 agonist that targets F2 terminals. This led to substantial increases in IPSC activity among WT relay neurons but had little impact in math5–/– mice. Together, these data suggest that retinal signaling is needed to support the arbor elaboration and synaptic connectivity of dLGN interneurons.

SIGNIFICANCE STATEMENT Presently, our understanding about the development of the dorsal lateral geniculate nucleus is limited to circuits involving excitatory thalamocortical relay neurons. Here we show that the other principal cell type, intrinsic interneurons, has a multistaged developmental plan that relies on retinal innervation. These findings indicate that signaling from the periphery guides the maturation of interneurons and the establishment of inhibitory thalamic circuits.



Neuronal Adaptation Reveals a Suboptimal Decoding of Orientation Tuned Populations in the Mouse Visual Cortex

Sensory information is encoded by populations of cortical neurons. Yet, it is unknown how this information is used for even simple perceptual choices such as discriminating orientation. To determine the computation underlying this perceptual choice, we took advantage of the robust visual adaptation in mouse primary visual cortex (V1). We first designed a stimulus paradigm in which we could vary the degree of neuronal adaptation measured in V1 during an orientation discrimination task. We then determined how adaptation affects task performance for mice of both sexes and tested which neuronal computations are most consistent with the behavioral results given the adapted population responses in V1. Despite increasing the reliability of the population representation of orientation among neurons, and improving the ability of a variety of optimal decoders to discriminate target from distractor orientations, adaptation increases animals' behavioral thresholds. Decoding the animals' choice from neuronal activity revealed that this unexpected effect on behavior could be explained by an overreliance of the perceptual choice circuit on target preferring neurons and a failure to appropriately discount the activity of neurons that prefer the distractor. Consistent with this all-positive computation, we find that animals' task performance is susceptible to subtle perturbations of distractor orientation and optogenetic suppression of neuronal activity in V1. This suggests that to solve this task the circuit has adopted a suboptimal and task-specific computation that discards important task-related information.

SIGNIFICANCE STATEMENT A major goal in systems neuroscience is to understand how sensory signals are used to guide behavior. This requires determining what information in sensory cortical areas is used, and how it is combined, by downstream perceptual choice circuits. Here we demonstrate that when performing a go/no-go orientation discrimination task, mice suboptimally integrate signals from orientation tuned visual cortical neurons. While they appropriately positively weight target-preferring neurons, they fail to negatively weight distractor-preferring neurons. We propose that this all-positive computation may be adopted because of its simple learning rules and faster processing, and may be a common approach to perceptual decision-making when task conditions allow.



Neural Maps of Interaural Time Difference in the American Alligator: A Stable Feature in Modern Archosaurs

Detection of interaural time differences (ITDs) is crucial for sound localization in most vertebrates. The current view is that optimal computational strategies of ITD detection depend mainly on head size and available frequencies, although evolutionary history should also be taken into consideration. In archosaurs, which include birds and crocodiles, the brainstem nucleus laminaris (NL) developed into the critical structure for ITD detection. In birds, ITDs are mapped in an orderly array or place code, whereas in the mammalian medial superior olive, the analog of NL, maps are not found. As yet, in crocodilians, topographical representations have not been identified. However, nontopographic representations of ITD cannot be excluded due to different anatomical and ethological features of birds and crocodiles. Therefore, we measured ITD-dependent responses in the NL of anesthetized American alligators of either sex and identified the location of the recording sites by lesions made after recording. The measured extracellular field potentials, or neurophonics, were strongly ITD tuned, and their preferred ITDs correlated with the position in NL. As in birds, delay lines, which compensate for external time differences, formed maps of ITD. The broad distributions of best ITDs within narrow frequency bands were not consistent with an optimal coding model. We conclude that the available acoustic cues and the architecture of the acoustic system in early archosaurs led to a stable and similar organization in today's birds and crocodiles, although physical features, such as internally coupled ears, head size, or shape, and audible frequency range, vary among the two groups.

SIGNIFICANCE STATEMENT Interaural time difference (ITD) is an important cue for sound localization, and the optimal strategies for encoding ITD in neuronal populations are the subject of ongoing debate. We show that alligators form maps of ITD very similar to birds, suggesting that their common archosaur ancestor reached a stable coding solution different from mammals. Mammals and diapsids evolved tympanic hearing independently, and local optima can be reached in evolution that are not considered by global optimal coding models. Thus, the presence of ITD maps in the brainstem may reflect a local optimum in evolutionary development. Our results underline the importance of comparative animal studies and show that optimal models must be viewed in the light of evolutionary processes.



Homer1a Is Required for Establishment of Contralateral Bias and Maintenance of Ocular Dominance in Mouse Visual Cortex

It is well established across many species that neurons in the primary visual cortex (V1) display preference for visual input from one eye or the other, which is termed ocular dominance (OD). In rodents, V1 neurons exhibit a strong bias toward the contralateral eye. Molecular mechanisms of how OD is established and later maintained by plastic changes are largely unknown. Here we report a novel role of an activity-dependent immediate early gene Homer1a (H1a) in these processes. Using both sexes of H1a knock-out (KO) mice, we found that there is basal reduction in the OD index of V1 neurons measured using intrinsic signal imaging. This was because of a reduction in the strength of inputs from the contralateral eye, which is normally dominant in mice. The abnormal basal OD index was not dependent on visual experience and is driven by postnatal expression of H1a. Despite this, H1a KOs still exhibited normal shifts in OD index following a short-term (2–3 d) monocular deprivation (MD) of the contralateral eye with lid suture. However, unlike wild-type counterparts, H1a KOs continued to shift OD index with a longer duration (5–6 d) of MD. The same phenotype was recapitulated in a mouse model that has reduced Homer1 binding to metabotropic glutamate receptor 5 (mGluR5). Our results suggest a novel role of H1a and its interaction with mGluR5 in strengthening contralateral eye inputs during postnatal development to establish normal contralateral bias in mouse V1 without much impact on OD shift with brief MD.

SIGNIFICANCE STATEMENT Visual cortical neurons display varying degree of responsiveness to visual stimuli through each eye, which determines their ocular dominance (OD). Molecular mechanisms responsible for establishing normal OD are largely unknown. Development of OD has been shown to be largely independent of visual experience, but guided by molecular cues and spontaneous activity. We found that activity-dependent immediate early gene H1a is critical for establishing normal OD in V1 of mice, which show contralateral eye dominance. Despite the weaker contralateral bias, H1aKOs undergo largely normal OD plasticity. The basic phenotype of H1aKO was recapitulated by mGluR5 mutation that severely reduces H1a interaction. Our results suggest a novel role of mGluR5-H1a interaction in strengthening contralateral eye inputs to V1 during postnatal development.



Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου