Αρχειοθήκη ιστολογίου

Αλέξανδρος Γ. Σφακιανάκης
ΩτοΡινοΛαρυγγολόγος
Αναπαύσεως 5
Άγιος Νικόλαος Κρήτη 72100
2841026182
6032607174

Τετάρτη 21 Φεβρουαρίου 2018

Transient Receptor Potential Vanilloid 4 (TRPV4) Expression on the Nerve Fibers of Human Dental Pulp is Upregulated under Inflammatory Condition

S00039969.gif

Publication date: Available online 21 February 2018
Source:Archives of Oral Biology
Author(s): Marina M. Bakri, Farhana Yahya, Khalil Munawar, Junichi Kitagawa, Mohammad Zakir Hossain
ObjectiveTransient receptor potential vanilloid 4 (TRPV4) has been considered as a mechano-, thermo- and osmo-receptor. Under inflammatory conditions in dental pulp, teeth can become sensitive upon exposure to a variety of innocuous stimuli. The objective of the present study was to investigate the expression of the TRPV4 channel on nerve fibers in human dental pulp of non-symptomatic and symptomatic teeth associated with inflammatory conditions.DesignDental pulp from extracted human permanent teeth was processed for fluorescence immunohistochemistry. Ten asymptomatic (normal) and 10 symptomatic (symptoms associated with pulpitis) teeth were used in this study. Nerve fibers were identified by immunostaining for a marker, protein gene product 9.5, and the cells were counterstained with 4',6-diamidino-2-phenylindole. An anti-TRPV4 antibody was used to trace TRPV4 expression.ResultsTRPV4 expression was co-localized with the nerve fiber marker. Immunoreactivity for TRPV4 was more intense (p < 0.05) in the nerves of symptomatic teeth than those of normal teeth. The number of co-localization spots was increased significantly (p < 0.05) in the dental pulp of symptomatic teeth compared with that of asymptomatic (normal) teeth.ConclusionsThere is expression of TRPV4 channels on the nerve fibers of human dental pulp. Our findings suggest upregulation of TRPV4 expression under inflammatory conditions in the pulp. The upregulation of TRPV4 channels may be associated with the exaggerated response of dental pulp to innocuous mechanical, thermal and osmotic stimuli under inflammatory conditions.



http://ift.tt/2EVaOfd

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου